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Chapter 7

Radio Frequency Basics and

Superconductivity

7.1 Introduction

An radio frequency (RF) cavity is a resonant waveguide with closed bound-
aries. Microwave power in the RF cavity is coupled to the particle beam to
accelerate the particles to high energies. It is of interest to find monochromatic
waves propagating down the waveguide of the form

~E = ~E0e
i(kz−ωt) (7.1)

~B = ~B0e
i(kz−ωt) (7.2)

The ~E and ~B fields must satisfy Maxwell’s equations inside the waveguide
given by

~∇× ~E = −∂ ~B
∂t

, ~∇ · ~B = 0
~∇× ~B = 1

c2
∂ ~E
∂t

, ~∇ · ~E = 0
(7.3)

Combining Maxwell’s equations, we arrive at two uncoupled wave equations

∇2 − 1

c2

∂2

∂t2

{

~E
~B

}

= 0 (7.4)

The ~E and ~B fields can be determined by solving the eigenvalue equation
subject to boundary conditions

n̂ × ~E = 0, n̂ · ~B = 0 (7.5)

The solutions to the eigenvalue problem by substituting Eq. 7.1 and 7.2 form
an orthogonal set of eigenvalues each with unique frequency and corresponding
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field configuration. Since, the electric and magnetic fields are independent with
different boundary conditions, they form two families of solutions which are
classified as transverse magnetic (TM) and transverse electric (TE) modes.

7.2 Pill-Box Cavity

In a pill-box cavity the fields are additionally subject to Eq. 7.5 at z = 0
and z = l, where l is the length of the cylindrical cavity. Reflections at the
z-boundaries create appropriate standing waves of the form

~E = ~E0 cos
(pπz

l

)

eiωt, p = 0, 1, 2 . . . (TM Modes) (7.6)

~B = ~B0 sin
(pπz

l

)

eiωt, p = 1, 2, 3 . . . (TE Modes) (7.7)

Substituting the above fields into the eigenvalue equation, two families of
modes similar to a waveguide are obtained. These modes are classified as
TMmnp or TEmnp, where m, n, and p are integers and describe the azimuthal,
radial, and longitudinal periodicity. The resonant frequencies of TM or TE
modes are given by

ωmnp =
1√
µ0ǫ0

√

(pmn

r

)2

+
(pπ

l

)2

− (TM) (7.8)

ωmnp =
1√
µ0ǫ0

√

(

p′

mn

r

)2

+
(pπ

l

)2

− (TE) (7.9)

where, pmn and p
′

mn are the nth zero of the Bessel function and its derivative
respectively, and r is the radius of the cylinder. The mode frequencies as a
function of cavity dimensions for a pill box cavity are shown in Fig. 7.1

To accelerate particles, a longitudinal ~E is required which is satisfied only
by J0. The lowest accelerating mode of the type TM0np has fields of the form

Ez = E0J0(ω0r/c) cos (ω0t) (7.10)

Hφ = − 1

µ0c
E0J0(ω0r/c) sin (ω0t) (7.11)

with all other field components are zero. This mode is denoted as TM010 with
fields similar to that shown in Fig. 7.2. The frequency of this mode in a pill-box
cavity is independent of the cavity length and is given by

ω =
2.405 c

R
(7.12)
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Figure 7.1: Mode frequencies as a function of cavity dimension for a pill box
resonator.
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Figure 7.2: Schematic of an elliptical cavity with field lines of TM010 mode.
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7.3 Characteristic Parameters

Some relevant figures of merit characterizing RF cavities are described in
the following section.

7.3.1 Accelerating Voltage

The longitudinal electric field accelerates or decelerates a particle depend-
ing on the particle phase with respect to the RF. The voltage gained by the
particle across the gap is given by

Vacc =

∣

∣

∣

∣

∣

∣

z=l
∫

z=0

Eze
iω0z/cdz

∣

∣

∣

∣

∣

∣

(7.13)

where l is the cavity length, and ω0 is the frequency of the mode. The particle
takes a finite time to traverse the cavity, leading to a reduction in energy gain
which is characterized by a transit time factor

T =

l
∫

0

E0e
iωz/c dz

l
∫

0

E0 dz

(7.14)

7.3.2 Stored Energy

For each mode in the cavity, the time averaged energy in the electric is
equal to that in the magnetic fields. The stored energy in the fields is given
by a volume integral

U =
1

2
ǫ0

∫

V

| ~E|2 dv =
1

2
µ0

∫

V

| ~H|2 dv (7.15)

7.3.3 Surface Resistance and Power Dissipation

Since, real metals have finite conductivity, RF fields at sufficiently high
frequencies penetrates a finite depth into the conductor. The current density
is exponentially decreasing into the metal. The surface impedance of the metal
is given by

Rs =

√

µω

2σ
(7.16)
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where, δ is known as the skin depth which is defined as

δ =

√

2

µωσ
. (7.17)

The power dissipated in the cavity walls due to the surface resistance is
given by the surface integral

Pd =
1

2
Rs

∫

S

| ~H|2 ds (7.18)

7.3.4 Quality Factor

The stored energy in the cavity decays exponentially

U(t) = U0 e−t/τ (7.19)

where τ is the characteristic time constant dependent on the material. This
figure of merit can also be expressed in terms of a quality factor

Q0 =
ω0U(t)

Pd(t)
(7.20)

which characterizes the amount of stored energy dissipated in on RF cycle

7.3.5 Geometric Factor and Shunt Impedance

A product of the surface resistance and quality factor is geometric constant
given by

G = RsQ0 =

ω0µ0

∫

V

| ~H2dv

∫

S

| ~H|2ds
(7.21)

Another figure of merit of a cavity which is the shunt impedance given by

Rshunt =
V 2

Pd
(7.22)

which measures the efficiency the accelerating voltage for given dissipation. A
more meaningful quantity is the ratio of shunt impedance to the quality factor

Ra

Q0

=
V 2

ωU
(7.23)

This quantity is independent of the cavity material and the field amplitude
and is a measure of the efficiency of the accelerating voltage for a given stored
energy.
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7.4 RF Superconductivity

The two most important characteristics of superconducting RF (SRF) cav-
ities are the high average gradient and cavity intrinsic Q0. The fundamental
advantage of superconducting materials is due to the extremely small surface
resistance (< 10 nΩ) compared to conventional copper which is typically sev-
eral orders higher (∼ mΩ). Therefore, operation of cavities in CW mode or
high duty factor become feasible due to significant reduction of power dissipa-
tion on the cavity walls. A simple example comparing the power consumption
of SRF cavities to copper cavities is illustrated in Table 7.1 [73]

Table 7.1: AC power required to operate 500 MHz superconducting and normal
conducting cavities at 1 MV/m

Option SRF Normal
Frequency [MHz] 500 500
Q0 2 × 109 2 × 104

Ra/Q0 [Ω/m] 330 900
P/L [W/m] 1.5 5.6 × 104

AC Power [kW/m] 0.54 112

Limitations on the maximum power dissipated on the cavity walls resulting
in vacuum degradation, stresses, and metal fatigue puts an upper limit on the
maximum gradient. In addition, SRF cavities also offer the option of having a
larger beam pipe to reduce wakefield effects. However, this results in a drop in
the R/Q0, but the very large intrinsic Q0 factor naturally helps to compensate
for this drop compared to copper cavities.

7.4.1 Superconductivity

The unique properties of superconductors has been subject of scrutiny
for several decades. A simplified two-fluid model proposed by London offers
a phenomenological explanation of the field exclusion of below the critical
temperature. The zero dc resistivity of a superconductor can be attributed to
the fact that super-electrons carry the current while shielding the field from
the normal electrons.

A more successfully microscopic theory to explain superconductivity was
put forth by Bardeen, Cooper, and Schrieer (BCS) in 1957. At a temperature
below the critical temperature (Tc), it is energetically favorable for a fraction of
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the electrons to be paired into Cooper pairs. The number of unpaired electrons
is

nnormal ∝ e
−

∆
kBT (7.24)

where, kB is the Boltzmann factor. These pairs consist of opposite spin and
momenta electrons which freely move without resistance. At T = 0 K, all
charge carriers are condensed into a single state transforming the metal into
an ideal superconductor.

7.4.2 Surface Resistance of Superconductor

Although, the dc resistivity is zero, there are small losses in the presence
of RF currents. The Cooper pairs posses inertia and at microwave frequencies
they are unable to screen the external fields completely from the normal elec-
trons. Although, Eq. 7.24 predicts that the surface resistance goes to zero at
T = 0 K, measurements reveal

Rs = A
1

T
f 2e

−
∆(T )
kBT + R0 (7.25)

where ∆ is the half the energy needed to break a Cooper pair, and A is a
material dependent constant which is dependent on the penetration depth,
coherence length, Fermi velocity, and the mean free path. R0 is known as the
residual resistance and can be affected by trapped flux and surface impurities.
The operating temperature of the SRF cavities is usually chosen in the range
where the BCS resistance dominates and the Carnot efficiency is tolerable.

7.4.3 Critical Fields

When considering superconducting materials for practical applications (for
example SRF cavities), the maximum tolerable surface fields are of substantial
interest. The ultimate theoretical limit is only posed by RF critical magnetic
field beyond which the screening effect of the Cooper pairs is lost. Existing
superconductors are classified as either Type I or II and differ in the surface
energy between the normal and superconducting boundaries.

Type I superconductors have positive surface energy and remain in a Meisnner
state up to a temperature dependent critical field Hc which is given by [74]

Hc(T ) = Hc(0)

[

1 −
(

T

Tc

)2
]

(7.26)
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Type II superconductors such as niobium are different because of their
negative surface energy of the interface. Therefore, it is energetically favorable
for the flux to create an interface. Beyond a critical field Hcl, a mixed state
of superconductor and normal conducting zones in periodic lattice is created
which also referred to as vortices. The flux in the vortices is given by

Φ0 =
hc

2e
(7.27)

The densities of the vortices increases with external magnetic field until the
entire sample is normal conducting at a second critical field Hc2. For nio-
bium, the choice of metal for SRF cavities, the theoretical critical field limit
is approximately 2200-2400 Oe.

There are no theoretical limitations on the RF electric fields, but accel-
erating cavities are usually operated well below field level (∼ 150 MV/m) to
support the critical magnetic field. This is due to several reasons like thermal
breakdown originating from surface defects, resonant electron multiplication
or multipacting, field emission, and other phenomena which are studied in
great detail in Refs. [73, 75].

7.4.4 Elliptical Multi-cell Cavities

The phenomenon of resonant electron multiplication in RF electric fields
or multipacting results in absorption of RF power and eventually breakdown
superconducting cavities. A more detailed treatment of multipacting can be
found in Ref. [73]. The most successful solution proposed to reduce or eliminate
multipacting was to use a spherical geometry to force the charges to drift to
the equator [76]. At the equator, E⊥ vanishes thereby reducing the number of
secondaries and suppress multipacting. Modern SRF cavities are elliptical in
shape due to mechanical stability requirements and ease of chemical treatment
of the cavity surface compared to the spherical shape [77].

The quest for achieving higher gradients to maximize the “real-estate”
gradient (or “MV/m”) has lead to strongly coupled multi-cell cavities. These
cavities can be viewed as coupled oscillators where each mode in a single cell
cavity is split into a passband of normal modes. The length of each cell is
chosen to be λ/2 so that the acceleration in the multi-cell cavity is maximized
for the eigenmode in the TM010 passband with π phase advance between each
cell.


